Search results for "Rhodococcus aetherivoran"

showing 4 items of 4 documents

Biosynthesis of selenium-nanoparticles and -nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1

2018

The wide anthropogenic use of selenium compounds represents the major source of selenium pollution world- wide, causing environmental issues and health concerns. Microbe-based strategies for metal removal/recovery have received increasing interest thanks to the association of the microbial ability to detoxify toxic metal/ metalloid polluted environments with the production of nanomaterials. This study investigates the tolerance and the bioconversion of selenite (SeO32−) by the aerobically grown Actinomycete Rhodococcus aetherivorans BCP1 in association with its ability to produce selenium nanoparticles and nanorods (SeNPs and SeNRs). The BCP1 strain showed high tolerance towards SeO32− with…

0301 basic medicineBioconversionStatic Electricity030106 microbiologychemistry.chemical_elementBioengineeringSelenious AcidSettore BIO/19 - Microbiologia GeneraleSelenium pollutionSelenium03 medical and health sciencesMinimum inhibitory concentrationchemistry.chemical_compoundNanoparticleBiosynthesisRhodococcusParticle SizeSelenite Rhodococcus aetherivorans Selenium nanoparticles Selenium nanorods Biogenic nanostructuresSelenium nanorodMolecular BiologyNanotubesbiologyBiogenic nanostructureRhodococcus aetherivoranSpectrometry X-Ray EmissionGeneral Medicinebiology.organism_classificationDynamic Light ScatteringSelenium nanoparticleBacteria AerobicNanotube030104 developmental biologychemistryBiochemistry13. Climate actionSelenious AcidSeleniteNanoparticlesMetalloidRhodococcusSeleniumRhodococcuBiotechnologyNew Biotechnology
researchProduct

Aerobic growth of Rhodococcus aetherivorans BCP1 using selected naphthenic acids as the sole carbon and energy sources

2018

Naphthenic acids (NAs) are an important group of toxic organic compounds naturally occurring in hydrocarbon deposits. This work shows that Rhodococcus aetherivorans BCP1 cells not only utilize a mixture of eight different NAs (8XNAs) for growth but they are also capable of marked degradation of two model NAs, cyclohexanecarboxylic acid (CHCA) and cyclopentanecarboxylic acid (CPCA) when supplied at concentrations from 50 to 500 mgL−1 . The growth curves of BCP1 on 8XNAs, CHCA, and CPCA showed an initial lag phase not present in growth on glucose, which presumably was related to the toxic effects of NAs on the cell membrane permeability. BCP1 cell adaptation responses that allowed survi…

0301 basic medicineMicrobiology (medical)Inclusion bodie030106 microbiologylcsh:QR1-502Settore BIO/19 - Microbiologia Generale7. Clean energyMicrobiologylcsh:Microbiology03 medical and health scienceschemistry.chemical_compoundBiosynthesisRhodococcus aetherivorans naphthenic acids stress response b-oxidation transmission electron microscopy fatty acids methyl esters inclusion bodiesnaphthenic acidsBeta oxidationchemistry.chemical_classificationbiologyStress responseRhodococcus aetherivoranNaphthenic acidCyclohexanecarboxylic acidbiology.organism_classificationRhodococcus aetherivoranschemistryBiochemistryFatty acids methyl esterβ-oxidationfatty acids methyl estersEnergy sourceRhodococcusBacteriaIntracellularTransmission electron microscopyPolyunsaturated fatty acid
researchProduct

Assembly, growth and conductive properties of tellurium nanorods produced by Rhodococcus aetherivorans BCP1

2018

AbstractTellurite (TeO32−) is a hazardous and toxic oxyanion for living organisms. However, several microorganisms can bioconvert TeO32− into the less toxic form of elemental tellurium (Te0). Here, Rhodococcus aetherivorans BCP1 resting (non-growing) cells showed the proficiency to produce tellurium-based nanoparticles (NPs) and nanorods (NRs) through the bioconversion of TeO32−, depending on the oxyanion initial concentration and time of cellular incubation. Te-nanostructures initially appeared in the cytoplasm of BCP1 cells as spherical NPs, which, as the exposure time increased, were converted into NRs. This observation suggested the existence of an intracellular mechanism of TeNRs assem…

0301 basic medicineBioconversionchemistry.chemical_elementNanoparticlelcsh:MedicineOxyanion02 engineering and technologySettore BIO/19 - Microbiologia GeneraleArticleNanomaterialsSurface-Active Agent03 medical and health scienceschemistry.chemical_compoundSurface-Active AgentsRhodococcuslcsh:ScienceMultidisciplinaryNanotubesbiologyChemistrylcsh:RElectric Conductivitynanoparticles Rhodococcus aetherivorans tellurite resting cells021001 nanoscience & nanotechnologybiology.organism_classificationNanotube030104 developmental biologyChemical engineeringChemical stabilityNanorodlcsh:QTellurium0210 nano-technologyTelluriumRhodococcusRhodococcuScientific Reports
researchProduct

Rhodococcus aetherivorans BCP1 as cell factory for the production of intracellular tellurium nanorods under aerobic conditions

2016

Tellurite (TeO3 2−) is recognized as a toxic oxyanion to living organisms. However, mainly anaerobic or facultative-anaerobic microorganisms are able to tolerate and convert TeO3 2− into the less toxic and available form of elemental Tellurium (Te0), producing Te-deposits or Te-nanostructures. The use of TeO3 2−-reducing bacteria can lead to the decontamination of polluted environments and the development of “green-synthesis” methods for the production of nanomaterials. In this study, the tolerance and the consumption of TeO3 2− have been investigated, along with the production and characterization of Te-nanorods by Rhodococcus aetherivorans BCP1 grown under aerobic conditions. Aerobically …

0301 basic medicineMicroorganism030106 microbiologyOxyanionBioengineeringSettore BIO/19 - Microbiologia GeneraleApplied Microbiology and Biotechnology03 medical and health scienceschemistry.chemical_compoundMinimum inhibitory concentrationBiogenic nanostructuresTelluriteRhodococcusFood scienceTellurium nanorodsSettore CHIM/02 - Chimica FisicaNanorods biosynthesisNanotubesbiologyStrain (chemistry)ResearchBiogenic nanostructureNanorods biosynthesiAerobiosiRhodococcus aetherivoranElemental telluriumTellurium nanorodbiology.organism_classificationAerobiosisNanotubeRhodococcus aetherivoranschemistryBiochemistryTelluriumAnaerobic exerciseRhodococcusBacteriaIntracellularRhodococcuBiotechnology
researchProduct